Copied to
clipboard

?

G = C4223D14order 448 = 26·7

23rd semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4223D14, C14.1372+ (1+4), C4⋊C433D14, (C4×D28)⋊13C2, (C4×C28)⋊7C22, C281D436C2, D14⋊C47C22, C4.D288C2, C422C22D7, C22⋊D2827C2, D14⋊D444C2, D28⋊C439C2, D14⋊Q840C2, (C2×D28)⋊29C22, C4⋊Dic761C22, C22⋊C4.40D14, D14.12(C4○D4), D14.5D438C2, D14.D448C2, (C2×C28).193C23, (C2×C14).248C24, Dic7⋊C427C22, C79(C22.32C24), (C4×Dic7)⋊38C22, C2.62(D48D14), C23.54(C22×D7), Dic7.D444C2, (C2×Dic14)⋊11C22, (C22×C14).62C23, (C23×D7).68C22, C22.269(C23×D7), C23.D7.64C22, (C2×Dic7).264C23, (C22×D7).111C23, C2.95(D7×C4○D4), (C2×C4×D7)⋊27C22, C4⋊C4⋊D741C2, (C7×C4⋊C4)⋊32C22, (D7×C22⋊C4)⋊20C2, (C7×C422C2)⋊3C2, C14.206(C2×C4○D4), (C2×C4).85(C22×D7), (C2×C7⋊D4).68C22, (C7×C22⋊C4).73C22, SmallGroup(448,1157)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4223D14
C1C7C14C2×C14C22×D7C23×D7D7×C22⋊C4 — C4223D14
C7C2×C14 — C4223D14

Subgroups: 1484 in 250 conjugacy classes, 93 normal (91 characteristic)
C1, C2 [×3], C2 [×6], C4 [×10], C22, C22 [×20], C7, C2×C4 [×6], C2×C4 [×8], D4 [×9], Q8, C23, C23 [×8], D7 [×5], C14 [×3], C14, C42, C42, C22⋊C4 [×3], C22⋊C4 [×11], C4⋊C4 [×3], C4⋊C4 [×3], C22×C4 [×4], C2×D4 [×7], C2×Q8, C24, Dic7 [×4], C28 [×6], D14 [×2], D14 [×15], C2×C14, C2×C14 [×3], C2×C22⋊C4, C4×D4 [×2], C22≀C2 [×2], C4⋊D4 [×3], C22⋊Q8, C22.D4 [×2], C4.4D4 [×2], C422C2, C422C2, Dic14, C4×D7 [×4], D28 [×7], C2×Dic7 [×4], C7⋊D4 [×2], C2×C28 [×6], C22×D7 [×4], C22×D7 [×4], C22×C14, C22.32C24, C4×Dic7, Dic7⋊C4 [×2], C4⋊Dic7, D14⋊C4 [×10], C23.D7, C4×C28, C7×C22⋊C4 [×3], C7×C4⋊C4 [×3], C2×Dic14, C2×C4×D7 [×4], C2×D28 [×5], C2×C7⋊D4 [×2], C23×D7, C4×D28, C4.D28, D7×C22⋊C4, C22⋊D28 [×2], D14.D4, D14⋊D4, Dic7.D4, D28⋊C4, D14.5D4, C281D4 [×2], D14⋊Q8, C4⋊C4⋊D7, C7×C422C2, C4223D14

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D7, C4○D4 [×2], C24, D14 [×7], C2×C4○D4, 2+ (1+4) [×2], C22×D7 [×7], C22.32C24, C23×D7, D7×C4○D4, D48D14 [×2], C4223D14

Generators and relations
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=dad=a-1b2, cbc-1=a2b, dbd=b-1, dcd=c-1 >

Smallest permutation representation
On 112 points
Generators in S112
(1 36 12 61)(2 30 13 69)(3 38 14 63)(4 32 8 57)(5 40 9 65)(6 34 10 59)(7 42 11 67)(15 39 28 64)(16 33 22 58)(17 41 23 66)(18 35 24 60)(19 29 25 68)(20 37 26 62)(21 31 27 70)(43 111 50 84)(44 78 51 105)(45 99 52 72)(46 80 53 107)(47 101 54 74)(48 82 55 109)(49 103 56 76)(71 88 112 95)(73 90 100 97)(75 92 102 85)(77 94 104 87)(79 96 106 89)(81 98 108 91)(83 86 110 93)
(1 48 25 85)(2 56 26 93)(3 50 27 87)(4 44 28 95)(5 52 22 89)(6 46 23 97)(7 54 24 91)(8 51 15 88)(9 45 16 96)(10 53 17 90)(11 47 18 98)(12 55 19 92)(13 49 20 86)(14 43 21 94)(29 102 61 109)(30 76 62 83)(31 104 63 111)(32 78 64 71)(33 106 65 99)(34 80 66 73)(35 108 67 101)(36 82 68 75)(37 110 69 103)(38 84 70 77)(39 112 57 105)(40 72 58 79)(41 100 59 107)(42 74 60 81)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 7)(2 6)(3 5)(9 14)(10 13)(11 12)(16 21)(17 20)(18 19)(22 27)(23 26)(24 25)(29 42)(30 41)(31 40)(32 39)(33 38)(34 37)(35 36)(43 96)(44 95)(45 94)(46 93)(47 92)(48 91)(49 90)(50 89)(51 88)(52 87)(53 86)(54 85)(55 98)(56 97)(57 64)(58 63)(59 62)(60 61)(65 70)(66 69)(67 68)(71 112)(72 111)(73 110)(74 109)(75 108)(76 107)(77 106)(78 105)(79 104)(80 103)(81 102)(82 101)(83 100)(84 99)

G:=sub<Sym(112)| (1,36,12,61)(2,30,13,69)(3,38,14,63)(4,32,8,57)(5,40,9,65)(6,34,10,59)(7,42,11,67)(15,39,28,64)(16,33,22,58)(17,41,23,66)(18,35,24,60)(19,29,25,68)(20,37,26,62)(21,31,27,70)(43,111,50,84)(44,78,51,105)(45,99,52,72)(46,80,53,107)(47,101,54,74)(48,82,55,109)(49,103,56,76)(71,88,112,95)(73,90,100,97)(75,92,102,85)(77,94,104,87)(79,96,106,89)(81,98,108,91)(83,86,110,93), (1,48,25,85)(2,56,26,93)(3,50,27,87)(4,44,28,95)(5,52,22,89)(6,46,23,97)(7,54,24,91)(8,51,15,88)(9,45,16,96)(10,53,17,90)(11,47,18,98)(12,55,19,92)(13,49,20,86)(14,43,21,94)(29,102,61,109)(30,76,62,83)(31,104,63,111)(32,78,64,71)(33,106,65,99)(34,80,66,73)(35,108,67,101)(36,82,68,75)(37,110,69,103)(38,84,70,77)(39,112,57,105)(40,72,58,79)(41,100,59,107)(42,74,60,81), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(22,27)(23,26)(24,25)(29,42)(30,41)(31,40)(32,39)(33,38)(34,37)(35,36)(43,96)(44,95)(45,94)(46,93)(47,92)(48,91)(49,90)(50,89)(51,88)(52,87)(53,86)(54,85)(55,98)(56,97)(57,64)(58,63)(59,62)(60,61)(65,70)(66,69)(67,68)(71,112)(72,111)(73,110)(74,109)(75,108)(76,107)(77,106)(78,105)(79,104)(80,103)(81,102)(82,101)(83,100)(84,99)>;

G:=Group( (1,36,12,61)(2,30,13,69)(3,38,14,63)(4,32,8,57)(5,40,9,65)(6,34,10,59)(7,42,11,67)(15,39,28,64)(16,33,22,58)(17,41,23,66)(18,35,24,60)(19,29,25,68)(20,37,26,62)(21,31,27,70)(43,111,50,84)(44,78,51,105)(45,99,52,72)(46,80,53,107)(47,101,54,74)(48,82,55,109)(49,103,56,76)(71,88,112,95)(73,90,100,97)(75,92,102,85)(77,94,104,87)(79,96,106,89)(81,98,108,91)(83,86,110,93), (1,48,25,85)(2,56,26,93)(3,50,27,87)(4,44,28,95)(5,52,22,89)(6,46,23,97)(7,54,24,91)(8,51,15,88)(9,45,16,96)(10,53,17,90)(11,47,18,98)(12,55,19,92)(13,49,20,86)(14,43,21,94)(29,102,61,109)(30,76,62,83)(31,104,63,111)(32,78,64,71)(33,106,65,99)(34,80,66,73)(35,108,67,101)(36,82,68,75)(37,110,69,103)(38,84,70,77)(39,112,57,105)(40,72,58,79)(41,100,59,107)(42,74,60,81), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,7)(2,6)(3,5)(9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(22,27)(23,26)(24,25)(29,42)(30,41)(31,40)(32,39)(33,38)(34,37)(35,36)(43,96)(44,95)(45,94)(46,93)(47,92)(48,91)(49,90)(50,89)(51,88)(52,87)(53,86)(54,85)(55,98)(56,97)(57,64)(58,63)(59,62)(60,61)(65,70)(66,69)(67,68)(71,112)(72,111)(73,110)(74,109)(75,108)(76,107)(77,106)(78,105)(79,104)(80,103)(81,102)(82,101)(83,100)(84,99) );

G=PermutationGroup([(1,36,12,61),(2,30,13,69),(3,38,14,63),(4,32,8,57),(5,40,9,65),(6,34,10,59),(7,42,11,67),(15,39,28,64),(16,33,22,58),(17,41,23,66),(18,35,24,60),(19,29,25,68),(20,37,26,62),(21,31,27,70),(43,111,50,84),(44,78,51,105),(45,99,52,72),(46,80,53,107),(47,101,54,74),(48,82,55,109),(49,103,56,76),(71,88,112,95),(73,90,100,97),(75,92,102,85),(77,94,104,87),(79,96,106,89),(81,98,108,91),(83,86,110,93)], [(1,48,25,85),(2,56,26,93),(3,50,27,87),(4,44,28,95),(5,52,22,89),(6,46,23,97),(7,54,24,91),(8,51,15,88),(9,45,16,96),(10,53,17,90),(11,47,18,98),(12,55,19,92),(13,49,20,86),(14,43,21,94),(29,102,61,109),(30,76,62,83),(31,104,63,111),(32,78,64,71),(33,106,65,99),(34,80,66,73),(35,108,67,101),(36,82,68,75),(37,110,69,103),(38,84,70,77),(39,112,57,105),(40,72,58,79),(41,100,59,107),(42,74,60,81)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,7),(2,6),(3,5),(9,14),(10,13),(11,12),(16,21),(17,20),(18,19),(22,27),(23,26),(24,25),(29,42),(30,41),(31,40),(32,39),(33,38),(34,37),(35,36),(43,96),(44,95),(45,94),(46,93),(47,92),(48,91),(49,90),(50,89),(51,88),(52,87),(53,86),(54,85),(55,98),(56,97),(57,64),(58,63),(59,62),(60,61),(65,70),(66,69),(67,68),(71,112),(72,111),(73,110),(74,109),(75,108),(76,107),(77,106),(78,105),(79,104),(80,103),(81,102),(82,101),(83,100),(84,99)])

Matrix representation G ⊆ GL6(𝔽29)

1700000
0170000
00280270
00028027
000010
000001
,
28280000
210000
00271100
0018200
00002711
0000182
,
100000
27280000
00212100
0082600
008888
00213213
,
2800000
210000
00212100
0026800
008888
00321321

G:=sub<GL(6,GF(29))| [17,0,0,0,0,0,0,17,0,0,0,0,0,0,28,0,0,0,0,0,0,28,0,0,0,0,27,0,1,0,0,0,0,27,0,1],[28,2,0,0,0,0,28,1,0,0,0,0,0,0,27,18,0,0,0,0,11,2,0,0,0,0,0,0,27,18,0,0,0,0,11,2],[1,27,0,0,0,0,0,28,0,0,0,0,0,0,21,8,8,21,0,0,21,26,8,3,0,0,0,0,8,21,0,0,0,0,8,3],[28,2,0,0,0,0,0,1,0,0,0,0,0,0,21,26,8,3,0,0,21,8,8,21,0,0,0,0,8,3,0,0,0,0,8,21] >;

64 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C···4G4H4I4J4K4L7A7B7C14A···14I14J14K14L28A···28R28S···28AA
order1222222222444···44444477714···1414141428···2828···28
size111141414282828224···414142828282222···28884···48···8

64 irreducible representations

dim1111111111111122222444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2D7C4○D4D14D14D142+ (1+4)D7×C4○D4D48D14
kernelC4223D14C4×D28C4.D28D7×C22⋊C4C22⋊D28D14.D4D14⋊D4Dic7.D4D28⋊C4D14.5D4C281D4D14⋊Q8C4⋊C4⋊D7C7×C422C2C422C2D14C42C22⋊C4C4⋊C4C14C2C2
# reps11112111112111343992612

In GAP, Magma, Sage, TeX

C_4^2\rtimes_{23}D_{14}
% in TeX

G:=Group("C4^2:23D14");
// GroupNames label

G:=SmallGroup(448,1157);
// by ID

G=gap.SmallGroup(448,1157);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,219,184,675,570,192,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=d*a*d=a^-1*b^2,c*b*c^-1=a^2*b,d*b*d=b^-1,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽